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Quantum walks and wavepacket dynamics on
a lattice with twisted photons
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The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex
quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations
of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the
experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of
light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the
whole process develops in a single light beam, with no need of interferometers; it requires optical resources
scaling linearly with the number of steps; and it allows flexible control of input and output superposition states.
Exploiting the latter property, we explored the system band structure in momentum space and the associated
spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstra-
tion introduces a novel versatile photonic platform for quantum simulations.

INTRODUCTION
First proposed by Feynman about 30 years ago (1), the simulation of a
complex quantum system by means of another simpler and well-
controlled quantum system is nowadays becoming a feasible, although
still challenging, task. Photons are a reliable resource in this arena, as
witnessed by the large variety of photonic architectures that have been
introduced hitherto for the realization of quantum simulators (2).
Among simulated processes, the quantum walk (QW) (3) is receiving
wide interest. A QW can be interpreted as the quantum counterpart of
thewell-known classical randomwalk. In its simplest, discrete, and one-
dimensional (1D) example, the latter is a path consisting of a sequence
of random steps along a line. At each step, the walker moves forward or
backward according to the outcome of a random process, such as the
flip of a coin.When both the walker and the coin are quantum systems,
we obtain a QW. The final probability distribution for the walker posi-
tion shows marked differences with respect to the classical process, due
to interferences between coherent superpositions of different paths (4).
It has beendemonstrated that this quantumprocess canbeused toperform
quantumsearch algorithmson a graph (5, 6) anduniversal quantumcom-
putation (7, 8). Moreover, it represents a versatile approach to the
simulation of phenomena characterizing complex systems, such as
Anderson localization in disordered media (9) and energy transport
in chemical processes (10). The coin-walker interaction, for example,
gives rise to fascinating analogies with quantum effects arising from
spin-orbit coupling: recently, it was demonstrated that discrete QWs
can simulate all classes of topological phases in 1Dand2D (11), and topo-
logically protected bound states have been observed at the interface
between regions with different topologies (12).

In the last decade, implementations ofQWs in 1Dhave been realized
in a variety of physical systems, such as trapped ions (13, 14) or atoms
(15), nuclearmagnetic resonance systems (16), and photons, using both
bulk optics (17–19) and integrated waveguides (20–22). Remarkably,
only a few photonic simulations of multiparticle QWs have been re-
ported, using two-photon states (9, 20–22) or classical coherent sources
(23). In photonic architectures, different strategies can be adopted, ac-
cording to the optical degrees of freedom exploited to encode the coin
and thewalker quantum systems. In 2010, Zhang et al. proposed a novel
approach for the realization of a photonic QW, based on the idea of
encoding the coin and the walker in the spin angular momentum
(SAM) and in the orbital angular momentum (OAM) of light, respec-
tively (24). A possible implementation of the same idea in a loop-based
configuration has been also analyzed (25). These theoretical proposals
put forward, for the first time, the possibility of implementing a photon-
ic walk without interferometers, with the whole process taking place
within a single light beam (we refer here to “real-space interferometers,”
relying on optical path splitting, as any kind of wave propagation in-
volves some form of modal interference). To obtain this result, these
schemes rely on the spin-orbit coupling occurring in a special optical
element called q-plate (QP) (26), whose action will be discussed later
on.Here,we implement experimentally the proposal byZhang et al., thus
demonstrating the first photonic QW occurring in a single light beam
and using the OAM degree of freedom of photons as discrete walker
coordinate [we notice that, although the QW realized in (19) and (23) in-
volves only inner degrees of freedom of a single light beam, its actual im-
plementation still relies on splitting the beam in a spatial interferometer].
We demonstrate both the QW of single photons and that of two in-
distinguishable photons, thus highlighting the role ofmultiparticle quantum
interferences. As we will discuss further below, this novel implementation
has potential advantages in terms of stability and scalability. Moreover,
in contrast to most current integrated-optics approaches, it allows one
to dynamically vary the Hamiltonian system and to measure the whole
evolution step by step (not only the final output) without changing the
experimental setup. Finally, a very important feature of this QW imple-
mentation is the possibility of flexibly preparing arbitrary superposi-
tions or “delocalized” initial states of the walker by exploiting standard
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holographic optical devices (or, conversely, tomake a full quantum tomo-
graphy of the delocalized output quantum state). As a specific demon-
stration of this feature, we experimentally verified the band structure
characterizing a QW; we prepared Gaussian wavepackets of a photon
inOAMspace, for different values of the average linear quasi-momentum,
and observed their free quantumdynamics, governed by the underlying
band dispersion relations and the associated topological spin-orbit
features (11, 27, 28).

RESULTS

QW in the OAM space of a photon
In the quantum theory framework, a discrete QW typically involves a
system described by a Hilbert space ℋ obtained by the direct product
ℋc⊗ℋw of the coin and the walker subspaces, respectively. In the sim-
plest case, the walker ismoving in a 1D lattice and, at each step, has only
two choices. Accordingly, the subspaceℋc is 2D, whereasℋw is infinite-
dimensional; they are spanned by the vectors {|↑〉c, |↓〉c} and {|x〉w, x ∈ ℤ},
respectively (in the following, subscripts c and w will be omitted for
brevitywhenever there is no risk of ambiguity). Alternatively, thewalker
state can be described in terms of its quasi-momentum k, which is
defined in the first Brillouin zone k ∈ (−p, p). The relation between
the two representations is given by the discrete Fourier transform, that
is, jk〉 ¼ ð1=

ffiffiffiffiffiffi
2π

p
Þ∑xe−ikxjx〉. The momentum representation provides

the framework to analyze the effective band structure of theQWsystem,
as will be discussed later on. The displacement of the walker at each step
of the process is realized by the shift operator Ŝ

S
ˇ

¼ j↑〉〈↑j⊗L
ˇ

þ þ j↓〉〈↓j⊗L
ˇ

−; ð1Þ

where the operators L

ˇ

þ− shift the position of the walker, that is,
L

ˇ

þ−jx〉 ¼ jx −+ 1〉. The displacement introduced by Ŝ is conditioned by
the coin; when this is in the state |↑〉, the walker moves up, and vice
versa. As a consequence, the operator Ŝ entangles the coin and the walk-
er systems (27, 29). Between consecutive displacements, the “random-
ness” is introduced by a unitary operatorT

ˇ

acting on the coin subspace,
as generally given by T

ˇ

|↑〉= a|↑〉+ b|↓〉 and T

ˇ

|↓〉 = b*|↑〉− a*|↓〉 (up to
a global phase), with a,b complex numbers such that |a|2 + |b|2 = 1; for
an unbiased walk, |a| = |b| = 1/

ffiffiffi
2

p
. A single step of the walk is described

by the step operator U

ˇ

¼ S

ˇ

⋅ ðT

ˇ

⊗ I

ˇ

wÞ, where Îw is the identity
operator inℋw . After n steps, the system initially prepared in the state
|y0〉 evolves to a new state

jyn〉 ¼ U

ˇ

njy0〉 ð2Þ

In the momentum representation, eigenstates of the operator Û have a
simple expression (11, 27), given by |k, s〉 = |ϕs(k)〉c ⊗ |k〉w with eigen-
values e–iws(k), where s ∈ {1, 2}. The dispersion relation of quasi-energies
ws(k) shows two gapped bands associatedwith the coin eigenstates |ϕs(k)〉,
whereas the parametric dependence of the latter states on k defines the
QW topological structure (28). A more detailed analysis of these QW
properties is provided in the Supplementary Materials.

Consider now a photon and its internal degrees of freedom repre-
sented by the SAM and the OAM. In the limit of paraxial optics, these
twoquantities are independent andwell defined; the first is associatedwith
the polarization of the light, whereas the second is related to the azimuthal
structure of the optical wavefront in the transverse plane (30). The SAM
space is spanned by vectors {|L〉, |R〉}, representing left circular and right

circular polarizations. The OAM space is spanned by vectors |m〉 with
m ∈ ℤ, which denote a photon carrying mħ of OAM along the prop-
agation axis, where ħ is the reduced Planck constant, and having a cor-
respondingly “twisted” wave function (see Fig. 1).

In our implementation, the coin and thewalker systems are encoded
in the SAM and the OAM of a photon, respectively. In particular, the
spatial walker coordinate x is replaced by the OAM coordinatem. The
concept of a QW in OAM within a single optical beam is pictorially
illustrated in Fig. 1. The step operator Û is realized by means of linear
optical elements. In the coin subspace, the unitary operator T

ˇ

can be im-
plemented by birefringent plates, such as quarter-wave plates (QWP)
and/or half-wave plates (HWP). In particular, we used only wave plate
combinations giving rise to unbiasedQWs.The shift operator Ŝ is realized
by a QP, a recently introduced photonic device that has already found
many useful applications in classical and quantum optics (26, 30–33).
The QP is a birefringent liquid-crystal medium with an inhomogeneous
optical axis that has been arranged in a singular pattern, with topological
charge q, so as to give rise to an engineered spin-orbit coupling in the light
crossing it. In particular, the QP raises or lowers the OAM of the incom-
ing photon according to its SAM state, while leaving the photon in the
sameoptical beam, that is,withnodeflections or diffractions. In the actual
device, the radial profile of the photonic wave function undergoes a small
alteration, which however can be approximately neglected in our imple-
mentation, as discussed in the Supplementary Materials. More precisely,
the action of a QP can be generally described by the operator Q

ˇ

d

Q

ˇ

djL;m〉 ¼ cosðd=2ÞjL;m〉 − i sinðd=2ÞjR;mþ 2q〉

Q

ˇ

djR;m〉 ¼ cosðd=2ÞjR;m〉 − i sinðd=2ÞjL;m − 2q〉; ð3Þ

where q is the topological charge of the QP, and d is the optical bi-
refringent phase-retardation (26, 30). Whereas q is a fixed property of
the QP, d can be controlled dynamically by tuning an applied voltage
(34). As shown in Eq. 3, the action of the QP is made of two terms. The
first, proportional to cos(d/2), leaves the photon in its input state.
The second, proportional to sin(d/2), implements the conditional
displacement of Eq. 1, but also adds a flip of the coin state. The latter
effect can be compensated by inserting an additional HWP.When d = p

Fig. 1. Conceptual scheme of the single-beam photonic QW in the
space of OAM. In each traversed optical stage (QW unit), the photon can
move to an OAM valuem that can increase or decrease by one unit (or stay
still, in the hybrid configuration). The OAM decomposition of the photonic
wave function at each stage thus includes many different components, as
shown in the callouts in which modes having different OAM values are rep-
resented by the corresponding helical (or “twisted”) wavefronts.
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(“standard” configuration), the first term vanishes and the standard shift
operator Ŝ is obtained. When d = 0, the evolution is trivial (the walker
stands still), whereas for intermediate values 0 < d < p, we have a novel
kind of evolution: besides moving forward or backward, the walker at
each step is provided with a third option, that is, to remain in the same
position. We refer to this as a “hybrid” configuration because it
mimics a walk with three possible choices, although the coin is still
2D. Similar to an effective mass, the d parameter controls the degree
of mobility of the walker, ranging from a vanishing mobility for d = 0
to a maximal mobility (not taking into account the effect of the coin)
for d = p.

Single-photon QW with localized initial state
In our first experiment, the step operator Û is implemented by a se-
quence of a QWP, a QP, and a HWP. The QPs have q = 1/2, so as to
induceOAMshifts of ±1. Because of reflection losses (mainly at theQP,
which is not antireflection-coated), each step has a transmission effi-
ciency of 86% (but adding an antireflection coating could easily improve
this value to >95%). The n-step walk is then implemented by simply
cascading a sequence of QWP-QP-HWP on the single optical axis of
the system. In the implemented setup, the linear distance d between ad-
jacent steps is small compared to the Rayleigh range zR of the photons,
that is, d/zR ≪ 1 (near-field regime), so as to avoid optical effects that
would alter the nature of the simulated process; a detailed discussion is
provided in the SupplementaryMaterials. The layout of the apparatus is
shown in Fig. 2. A photon pair is generated by spontaneous parametric
down-conversion (SPDC) in the product state |H〉|V〉, where H and V
stand for horizontal and vertical linear polarization (see the caption of
Fig. 2 for details). To carry out a single-particle QW simulation, we split
the two input photons with a polarizing beam splitter (PBS); the H-
polarized photon only enters the QW setup after being coupled into a
single-mode optical fiber (SMF), which sets m = 0. At the exit of the
fiber, the initial polarization of the photon is recovered using a QWP-
HWP set (not shown in the figure). TheV-polarized photon, reflected
at the PBS, is sent directly to a detector and provides a trigger, so as to
operate theQWsimulation in a heralded single-photon quantumregime.

The photon entering the QW setup is initially prepared in a separa-
ble state |y0〉 = |ϕ0〉c ⊗ |y0〉w. A computer-generated hologram
displayed on a spatial light modulator (SLM 1) is used to prepare the
walker initial state in a generic superposition of OAM states (35, 36) in
Hw (see the SupplementaryMaterials for details). After the SLM1, the coin
is prepared in the state |ϕ0〉c = a|L〉 + b|R〉, where the two complex coef-
ficients a and b (with |a|2 + |b|2 = 1) can be selected at will by a QWP-
HWP set (apart from an unimportant global phase). The photon then
undergoes the QW evolution and, at the exit, is analyzed in both polar-
ization and OAM so as to determine the output probabilities. Details on
projectivemeasurements inOAMare given in the SupplementaryMaterials.

In the already mentioned first set of experiments, we carried out
QWs with single photons prepared in the localized state m = 0 on the
OAM lattice, with varying SAM input states. In Fig. 3, we report the
experimental and predicted results relative to a four-step QW, for
two possible input polarization states, and both in the standard and
hybrid configurations (two additional input polarization cases are given
in fig. S3). To evaluate quantitatively the agreement between measured
and predicted probability distributions, P(m) and P′(m), we also com-

puted their “similarity” S ¼ ∑m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðmÞP′ðmÞ

q" #2

=ð∑mPðmÞ∑mP′ðmÞÞ.

The values we obtain in the various cases are given in the figure captions.

Simulation of wavepacket dynamics in OAM space
Next, exploiting the possibility to control the walker initial state, we in-
vestigated theQWevolution for states with a given quasi-momentum k,
thus probing the dispersion relation of the effective band structure of
our QW system and its associated topological structure (for the stan-
dard case with d = p). A similar approach was used to simulate the evo-
lution of a multiband Bloch particle in a time-dependent field, by
shining an engineered waveguide array with classical coherent light
(37) [see also (38) for a review on discrete-waveguide lattice effects].
Controlling the quasi-momentum of delocalized quantum states is cru-
cial for carrying out quantum simulations of Bloch-particle dynamics,
as shown for instance in (39).

Using the holographic method described in the Supplementary
Materials, we prepared single-photon wavepackets given by jy0

s〉 ¼
jϕsðk0Þ〉c⊗ð∑mAðmÞe−ik0mjm〉wÞ, whereAðmÞ ¼ A0e−m

2=2s2 is aGaussian

Fig. 2. Experimental apparatus for single-photon QW experiments.
Frequency-doubled laser pulses at 400 nm and with 140-mW average
power, obtained from the fundamental pulses (100 fs) generated by a
titanium:sapphire source (Ti:Sa) at a repetition rate of 82MHz, pumpa3-mm-
thick nonlinear b-barium borate crystal (BBO1) cut for type II SPDC (seemain
text for a definition of all acronyms). Photon pairs at 800 nm generated
through this process, cleaned from residual radiation at 400 nmusing a long
pass filter, pass through an HWP and the BBO2 crystal (cut as BBO1, but
1.5 mm thick) to compensate both spatial and temporal walk-off intro-
duced by BBO1. Next, the two photons are split by a PBS; one is sent directly
to the avalanche single-photon detector (APD) D1, whereas the other is
coupled into an SMF. At the exit of the fiber, the photon goes through N
identical subsequent QW steps (N = 5 in the figure), is then analyzed in both
polarization and OAM, and is finally detected with APD D2, in coincidence
with D1. Before entering the first QW step, an SLM 1 and an HWP-QWP set
are used to prepare the photon initial state in the OAM and SAM spaces,
respectively. At the exit of the last step, the polarization projection on the
state |ff〉c is performed with a second HWP-QWP set followed by a linear
polarizer (LP). The OAM state is then analyzed by diffraction on SLM 2, fol-
lowed by coupling into a SMF. The projection state |yf〉w corresponding to
each OAM eigenvaluem was thus fixed by the hologram pattern displayed
on SLM 2. Before detection, interferential filters (IF) centered at 800 nm and
with a bandwidth of 3.6 nm were used for spectral cleaning. As shown in
the legend, a single QW step consists of a QWP (optical axis at 45° from the
horizontal), a QP with q = 1/2 (axis at 0°), and an HWP (axis at 0°); the HWP
was not included in the wavepacket and two-photon experiments.
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envelope in OAM space, and |ϕs(k0)〉c (with s = 1, 2) is the polarization-
coin part of the step-operator eigenstate (11). The associated quasi-
momentum has a Gaussian distribution centered on k0 (incidentally, the
average quasi-momentum k0 corresponds also to the average azimuthal
angle in real space for the optical field distribution within the beam).
When A(m) is a slowly varying envelope, these wavepackets are ex-
pected to propagate on the 1D lattice with onlyminimal shape variations
and with a speed given by the group velocity Vsðk0Þ ¼ ðdws=dkÞk¼k0 .
States belonging to different bands, which correspond to orthogonal po-
larization eigenstates, propagate in opposite directions, that is, V1(k0) =
–V2(k0), highlighting the strong spin-orbit coupling of this system (see
Supplementary Materials for more details).

In Fig. 4, we report the experimental “real-time” (that is, step-by-
step) observation of these propagating packets for a five-step QW.
These data refer in particular to the band s = 1, with k0 = p and k0 =
p/2, corresponding tomaximumandvanishing group velocities, respec-
tively, with a step operator implemented by a QP plus a QWP.Next, we
proceeded to explore thewhole irreducible Brillouin zone by varying the
average quasi-momentum k0 in steps of p/8 across the (0, p) range. At
each value of k0, in order to obtain a single wavepacket propagation, the
SAM input state must be prepared in the eigenstate |ϕ1(k0)〉, cor-
responding to a specific elliptical polarization.As a result of the so-called
sublattice or chiral symmetry (11), the corresponding SAM (or coin)
eigenstates of these wavepackets describe a maximum circle in the
Poincaré polarization sphere, as illustrated in Fig. 5A. The number
of full rotations of the vector |ϕ1(k)〉 on the sphere, as k varies from
–p to p, is a topological property of the QW system. In our case, we
observe a single full rotation (we actually see half a rotation, as we tested

only half of the Brillouin zone), thus verifying the topological class of our
system. Other topological QWphases could be realized bymodifying the
QWstep operatorÛ, as discussed in (11).We then determined the group
velocity of these wavepackets by measuring the mean OAM exit value
after five steps, as shown in Fig. 5B. The whole OAM distribution for
some of these points is also shown in Fig. 5 (C to G).

Finally, the behavior of a wavepacket whose coin is prepared in the
superposition state (|ϕ1(k0)〉 + |ϕ2(k0)〉)/

ffiffiffi
2

p
was also investigated. As a

result of the spin-orbit coupling, the wavepacket splits into two compo-
nents propagating in opposite directions, as shown in Fig. 5H. In this
example, the QW clearly leads to the generation of entanglement be-
tween the SAM and OAM degrees of freedom. The large average
OAM separation obtained between the two wavepacket components
implies that the obtained final photon state can be interpreted as a
Schrödinger “cat state” in OAM space.

Two-photon QW
The experiments discussed above were carried out in the heralded
single-photon regime. Although the latter is a quantum regime, it be-
haves equivalently to a classical one, as the resulting probability dis-
tributions are identical to the intensity distributions that would be
obtained using classical (coherent) light. However, the OAMQW plat-
form introduced in this work is also immediately suitable for simulating
multiparticle quantumprocesses, for which quantum interferences can-
not be reproduced classically.

To provide a first demonstration of this additional feature, we inves-
tigated the simultaneousQWof two identical photons. In this case, both
photons generated in the SPDCprocesswere sent to theQWsetup, after

Fig. 3. Four-step QW for a single photon with localized input. (A toD)
Experimental results, includingboth intermediate and final probabilities for
different OAM states in the evolution (summed over different polariza-
tions). The intermediate probabilities at step n are obtained by switching
off all QPs that follow that step, that is, setting d = 0. (A) and (B) refer to the
standard case with two different input states for the coin subsystem, (a, b) =
(0, 1) and 1/

ffiffiffi
2

p
(1, i), respectively. (C) and (D) refer to the hybrid case with d =

1.57, with the same initial coin-states. (E toH) Corresponding theoretical
predictions. Poissonian statistical uncertainties at ±1 standard deviation are
shown as transparent volumes in (A) to (E). The similarities between ex-
perimental and predicted final OAM distributions are 94.7 ± 0.4%, 93.4 ±
0.5%, 99.7 ± 0.1%, and 99.2 ± 0.2%, respectively. Panels on the same column
refer to the same configuration and initial states. The color scale reflects the
number of steps.
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adjusting their input polarization state to |R〉|L〉, selected as a typical
case. At the exit of the QW cascade, we split the two photons with a
beam splitter (BS) and analyzed them in both polarization and OAM,
so as to obtain their joint probability distribution (see fig. S4 for the
experimental layout). In Fig. 6, the results relative to a three-step QW
with localized OAM input m = 0 are reported and compared with the
theoretical predictions obtained for indistinguishable photons (while
taking into account the effect of the final beam splitter), hereafter labeled
as “indistinguishable-photon theory” (IPT). The two distributions show
a good quantitative agreement, as confirmed by their similarities being
higher than 95% (see figure captions for details). These similarities are
defined as in the single photon case, with the index m replaced by the
pair of OAM values (m1,m2). The predicted distributions for the case of
distinguishable photons (DPT) are also shown for comparison to
highlight the role of two-particle interference in the final distributions.
The similarities of the data with the DPT distributions are significantly
lower. However, the similarity is not a very sensitive test, because it tends
to remain high even for fairly different distributions. Hence, we also
computed the “total variation distance” (TVD; defined as the sum of
the absolute values of all probability differences divided by two) for
the two cases. In the standard case, the TVD of the experimental
distribution with the IPT one is 6.5 ± 0.9%, to be compared with the
TVD of 16.5 ± 0.9% for the DPT model. In the hybrid case, the TVD

with the IPT is 13.5 ± 0.7%, to be
compared with 21.1 ± 0.7% for
the DPT. These values confirm
that two-photon interferences
are present in our experiment.
We ascribe the residual discre-
pancies between the observed
distributions and the IPT quan-
tum predictions to systematic
errors arising from imperfect
alignment of the setup.

On the other hand, it is also
possible to demonstrate a quan-
tum behavior in the observed
distributions independently of
any specific model for the pho-
ton propagation in the QW
system, so as to be insensitive
to alignment imperfections or
other kinds of systematic er-
rors. As discussed in the Sup-
plementary Materials, this is
accomplished by testing the vi-
olation of certain characteristic
inequalities that constrain any
possible correlation distribution
obtained with two classical light
sources instead of two photons
(20), or with two distinguisha-
ble photons. The measured dis-
tributions indeed violate these
inequalities by several SDs, as
illustrated in the Supplementary
Materials (figs. S6 and S7). This
proves once more that the mea-

sured correlations must be quantum and that they include the effect
of multiparticle interference.

DISCUSSION

In this article, we have demonstrated a single- and multiphoton QW
simulator based on single beam propagation through linear optical de-
vices. The realized architecture is efficient and stable. Moreover, in con-
trast to other photonic QW implementations, the number of optical
components employed scales only linearly with the number of steps,
because at each step all OAM values are addressed simultaneously by
a single optical element, whose transverse extension remains constant. It
must be noted, however, that this advantage in scaling remains valid
only as long as the entireQW takes place in the optical near-field, where
the beam cross-section size will remain approximately constant,
whereas in the far-field, the transverse size of the optical components will
have to increase with the OAM range (see the SupplementaryMaterials).

An important advantage of this platform is the possibility to prepare
thewalker initial state, even if extended overmany lattice sites, with high
accuracy and flexibility. We exploited this feature to investigate the effec-
tive band structure of QWs, demonstrating the propagation of Gaussian
wavepackets for different points in the Brillouin zone and exploring the

Fig. 4. Wavepacket propagation in a five-step QW. (A and B) Experimental results, showing the step-by-step evo-
lution of the OAM distribution of a single photon prepared in a Gaussian wavepacket with s = 2, in the SAM band s =
1 (summed over different polarizations). (A) and (B) correspond to the two cases k0 = p (maximal group velocity) and
k0 = p/2 (vanishing group velocity), respectively. The latter configuration shows some spreading of the Gaussian
envelope, governed by the group velocity dispersion. Poissonian statistical uncertainties at ±1 SD are shown as
transparent volumes. (C and D) Theoretical predictions corresponding to the same cases. At the fifth step, the simi-
larities between experimental and theoretical OAM distributions are 98.2 ± 0.4% and 99.0 ± 0.2%, respectively. The
color scale reflects the number of steps.
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associated topological structure arising from the spin-orbit coupling. For
a certain initial state, the wavepacket is split in two by the QW evolution,
leading to a quantum “Schrödinger cat state” in OAM. In prospect, it will
be very interesting to simulate the quantum propagation of extended
states of two (or more) photons, possibly entangled to each other, such
as those naturally generated in the SPDC process. Moreover, engineering
the initial state of the walker is a possible strategy for the simulation of
complex QW dynamics through the combination of suitable delocalized
initial conditions plus a standard QW evolution; a theoretical proposal
was reported recently for the case of “driven QWs” (40).

A current limitation of our approach is that the walk evolution can-
not be position-dependent (that is, OAM-dependent), in contrast to
other implementations (9, 23). This limitation could be overcome in
the future by introducing additional optical elements acting on the az-
imuthal coordinate (for example, aDove’s prism can introduce anOAM-
dependent phase shift) or by exploiting the radial beamcoordinate,which
couples with OAM in free propagation and can be acted on by a radially
patterned optical element. On the other hand, our approach allows very
convenient andeasy control of the evolutionoperator at each step, includ-
ing the possibility of fully automated fast switching of its properties by

introducing electro-optical devices to manipulate the polarization or by
electrically controlling the QP tuning. This may enable, for example, the
simulation of a quantum system having a time-dependent Hamiltonian
or that of a statistical ensemble of quantum systemswith differentHamil-
tonians. Another potential advantage of the present implementation is
the possibility to carry out a full quantum tomography of the outgoing
state, which is very challenging for standard interferometric implementa-
tions. Finally, wemustmention the important limitation of our platform,
common to all fully photonic QW implementations, of not being able to
simulate particle interactions. A possible future strategy to overcome this
limitationmight be based on ideas similar to those proposedbyKnill et al.
for doing quantum computation with linear optics (41, 42).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/
full/1/2/e1500087/DC1
Fig. S1. Band structure of the QW system.
Fig. S2. Holograms for the preparation of the OAM initial state before the QW process.
Fig. S3. Supplementary data for the four-step quantum walk for a single photon, with various
input polarization states.

Fig. 5. QW wavepacket dispersion properties in the Brillouin zone.
(A) Poincaré sphere representation of the polarization (or SAM) eigen-
states |f1(k)〉 prepared in our experiments, for different values of the quasi-
momentum k in the irreducible Brillouin zone (0, p) taken in steps of p/8 (blue
dots). These states lie on a maximal circle (blue line) of the sphere. (B) Mean
OAMafter a five-step QW for a single photon prepared in a Gaussianwave-
packet with s = 2 and s = 1, with different values of average quasi-
momentum k0 in the range (0, p). Blue and purple points are associated
to experimental data and theoretical predictions, respectively; Poissonian
statistical uncertainties are too small to be shown in the graph. (C toG) Final

OAM distribution associated to some of these cases (summed over differ-
ent polarizations). Panels refer to k0 = 0, p/4, p/2, 3p/4, p, respectively. (H)
OAM distribution after a five-step QW for a wavepacket whose coin is
prepared in the superposition state (|f1(0)〉 + |f2(0)〉)/

ffiffiffi
2

p
. As predicted by

the theory, it splits into two components propagating in opposite direc-
tions, thus generating a maximally entangled SAM-OAM state. In (C) to
(H), Poissonian statistical uncertainties at ±1 SD are shown by error bars.
The similarities between experimental and theoretical OAM distributions
are 98.9 ± 0.2%, 96.2 ± 0.4%, 98.4 ± 0.3%, 93.2 ± 0.6%, 99.1 ± 0.2%, and
97.3 ± 0.4%, respectively.
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Fig. S4. Two-photon QW apparatus.
Fig. S5. Experimental verification of the indistinguishability of the two-photon source through
polarization Hong-Ou-Mandel (HOM) interference.
Fig. S6. Experimental violation of correlation inequalities for two photons that have completed
the standard QW (d = p).
Fig. S7. Experimental violation of correlation inequalities for two photons that have completed
the hybrid QW (d = p/2).
Table S1. Power coefficients of the various p-index terms appearing in the expansion of the
beam emerging from a QP (with q = 1/2) in the LG mode basis, assuming that the input is an
L-polarized LG mode with p = 0 and the given OAM m value.
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I. EFFECTIVE BAND STRUCTURE OF THE QUANTUM WALK SYSTEM

Due to the translational symmetry of the quantum walk (QW) system, eigenstates of the single step evolution

operator Û are obtained as the direct product of quasi-momentum eigenstates |k〉w in the walker space Hw with
suitable eigenvectors |φs(k)〉c living in the coin (polarization) space Hc (in the following, subscripts w and c will
be omitted whenever there is no risk of ambiguity). We label these eigenstates as |k, s〉 = |φs(k)〉c ⊗ |k〉w, with
s ∈ {1, 2}1,2. The corresponding eigenvalues are λs(k) = e−iωs(k), where the relation between the quasi energy ω and

the quasi momentum k for a coin operator T̂ having a = b = 1/
√

2 (the standard Hadamard gate) has the following
analytical expression3:

ω2(k) = arcsin

(
sin k√

2

)
; ω1(k) = π − ω2(k). (S1)

In the SAM-OAM implementation of the QW process, this specific dispersion relation is obtained when using a
quarter-wave plate and a q-plate in each step. Both energy and momentum are periodic quantities, as a result of the
discrete nature of the space-time considered in the process. In Fig. S1 we report a graph for the dispersion relation
and the group velocity dispersion. The two bands s = 1 and s = 2 are characterized by a finite energy gap, and their
group velocities, defined as Vs = dωs/dk, have the same magnitude but opposite sign, i.e. V1(k) = −V2(k). As shown

in the graph, Vs is bounded in the range (−1/
√

2, 1/
√

2), and it vanishes for k = ±π/2. As shown in Fig. 5 of the
main article, the coin eigenstates |φs(k)〉c span a great circle on the Poincaré sphere, as the result of the so-called
chiral or sublattice symmetry1.

FIG. S1. Band structure of the QW system. (a) The plot shows the dispersion relation ωs(k) for both bands s = 1 and s = 2.
A finite energy gap can be observed. (b) Dispersion of the group velocity Vs(k). It’s worth noticing that when k = ±π/2,
the group velocity vanishes for both bands and, at the same time, it has the maximum slope. In the context of wavepackets
dynamics, for these values of the quasi-momentum the dispersion of the group velocity will give a larger contribution to the
broadening of the initial envelope in comparison with the case of packets propagating at non-zero speed.
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II. THE Q-PLATE DEVICE

A q-plate (QP) consists of a thin slab of uniaxial birefringent nematic liquid crystal sandwiched between two glasses,
whose optical axis in the slab plane is engineered in an inhomogeneous pattern, according to the relation

α(φ) = q φ+ α0, (S2)

where α is the angle formed by the optical axis with the reference (horizontal) axis, φ is the azimuthal coordinate in
the transverse plane of the device, q is the topological charge of the plate and α0 is the axis direction at φ = 0. When
light passes through a QP, the angle α0 controls the relative phases of the different OAM components in the output
state. For arbitrary α0, the action of the QP is described by the following equations

Q̂α0

δ |L,m〉 = cos (δ/2)|L,m〉 − i sin (δ/2)ei 2α0 |R,m+ 2q〉,

Q̂α0

δ |R,m〉 = cos (δ/2)|L,m〉 − i sin (δ/2)e−i 2α0 |L,m− 2q〉, (S3)

which reduces to Eq. 4 of the main text when α0 = 0. A vanishing relative phase between the two OAM-shifted terms
is required to properly implement the operator Û describing the QW process. To achieve this, all QPs in our setup
were oriented so as to match the condition α0 = 0.

III. ROLE OF THE RADIAL MODES AND GOUY PHASES

Our QW realization relies on the encoding of the walker state in the transverse modes of light, in particular exploiting
the azimuthal degree of freedom. For simplicity, the radial structure of the mode is not considered explicitly in our
scheme. However, a full treatment of the optical process requires one to take the radial effects into account. Indeed, all
optical devices used to manipulate the azimuthal structure and hence the OAM of light, including the QP, unavoidably
introduce some alteration of the radial profile of the beam, particularly when subsequent free propagation is taken
into account.

In this context, we choose Laguerre-Gauss (LG) modes as the basis, since they provide a set of orthonormal solutions
to the paraxial wave equation. LG modes are indexed by an integer m and a positive integer p which determine the
beam azimuthal and radial structures, respectively. Using cylindrical coordinates r, φ, z, these modes are given by

LGp,m(r, φ, z) =

√
2|m|+1p!

πw(z)2 (p+ |m|)!

(
r

w(z)

)|m|
e
− r2

w(z)2 L|`|p

(
2r2

w(z)2

)
e

(
iπr2

λR(z)

)
eimφ e

−i(2p+|m|+1) arctan
(
z
zR

)
,

(S4)

where λ is the wavelength, w(z) = w0

√
1 + (z/zR)2, R(z) = z

[
1 + (z/zR)2

]
and zR = πw2

0/λ are the beam radius,

wavefront curvature radius and Rayleigh range, respectively, w0 being the radius at the beam waist4. L
|`|
p (x) are the

generalized Laguerre polynomials.
As already discussed, the QP raises or lowers the OAM content of the incoming beam, according to its polarization

state. Due to presence of the singularity at the origin, the QP also alters the radial index of the incoming beam. The
details of these calculations are reported in Ref. 5. Based on this analysis and assuming a low birefringence of the
liquid crystals, a tuned QP (i.e. with δ = π) transforms a circularly polarized, e.g. left-handed, input LG0,m(r, φ, 0)
beam as follows:

Q̂πLG0,m(r, z)|L,m〉 = −iHyGG|m|−|m+1|,m+1(r, z)|R,m+ 1〉, (S5)

where LG0,m(r, 0) (without the φ variable) denotes the radial part of the LG0,m(r, φ, 0) mode (i.e. with φ = 0),
HyGGp,m(r, z) stands for the amplitude of Hypergeometric-Gauss (HyGG) modes6 and the azimuthal term eimφ has
been replaced by the ket |m〉. Introducing dimensionless coordinates ρ = r/w0 and ζ = z/zR, these modes are given
by

HyGGpm(ρ, ζ) = i|m|+1

√
2p+|m|+1

πΓ(p+ |m|+ 1)

Γ
(
1 + |m|+ p

2

)
Γ (|m|+ 1)

(S6)

× ζ
p
2 (ζ + i)−(1+|m|+

p
2 )ρ|m| e−

iρ2

(ζ+i)
1F1

(
−p

2
, 1 + |m|; ρ2

ζ(ζ + i)

)
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TABLE I. Power coefficients of the various p-index terms appearing in the expansion of the beam emerging from a QP (with
q = 1/2) in the LG-mode basis, assuming that the input is an L-polarized LG mode with p = 0 and the given OAM m value.

OAM |c0|2 |c1|2 |c2|2 |c3|2

m = 0 0.785 0.098 0.036 0.019
m = 1 0.883 0.073 0.020 0.008
m = 2 0.920 0.057 0.012 0.004
m = 3 0.939 0.046 0.008 0.002

where Γ(x) is the gamma function and F1(a, b;x) is a confluent hypergeometric function. In order to determine
the radial mode alteration introduced by the QP, we can expand the output beam in the LG modes basis, i.e.
HyGG|m|−|m+1|,m+1 =

∑
p cpLGp,m+1

6. The expansion coefficients are given by

cp =

√
1

p!m! (p+ |m+ 1|)!

(|m+ 1|+ |m|)! Γ
(
p+ |m+1|−|m|

2

)
Γ
(
|m+1|−|m|

2

) (S7)

Table I shows the squared coefficients of this expansion for input beams possessing different OAM values. As can be
seen, the effect of the QP on the radial mode decreases for beams having higher OAM values, so that only the p = 0
coefficient that was already present at the input retains a large value after the QP, and one can approximately neglect
higher-p terms. If the final detection based on coupling in a single-mode fiber filters only this term, then the presence
of the other terms only introduces a certain amount of losses in the system. Hence, within such approximation, the
p quantum number plays essentially no role and it can be ignored (except for the Gouy phase, which is discussed
further below).

Even stronger is the argument one can use if the entire QW simulation takes place in the optical near field. Indeed,
at the pupil plane (ζ → 0) the expression for the amplitude of HyGG and LG modes simplifies to

LGp′m′(ρ, 0) ∝ L|`|p (ρ2)ρ|m|e−ρ
2

(S8)

HyGGpm(ρ, 0) ∝ ρp+|m|e−ρ
2

.

Combining Eq. S5 and Eq. S8, it is straightforward to prove that the action of a QP placed at the pupil plane of the
beam is given by

Q̂πLG0,m(ρ, 0)|L,m〉 = −iLG0,m(ρ, 0)|R,m+ 1〉. (S9)

In other words, at the immediate output of the device, the QP ideally results only in the increment of the OAM
content, without any alteration of the radial profile. This result remains approximately valid as long as the beam is
in the near field, that is for ζ � 1, except for a region very close to the central singularity and for some associated
fringing that occurs outside the singularity. Both these effects can be neglected for ζ � 1, as the overlap integral of
the resulting radial profile with the input Gaussian profile remains close to unity (for example, at ζ = 0.1 this overlap
is still about 0.93 for a HyGG mode with m = 1). We exploit this property to minimize any effect due to a possible
coupling between the azimuthal and the radial degree of freedom introduced by the QP. The setup was built in order
to have all the steps of the QW in the near field of the input photons. To achieve this, we prepared the beam of input
photons to have zR > 10 m, while the distance between the QW steps was d ≈ 10−2zR. For realizing a QW with high
number of steps, a lens system could be used to image the output of each QW unit at the input of the next one; in
this way the whole process may virtually occur at the pupil, i.e. at ζ = 0, thus effectively canceling all radial-mode
effects.

Free space propagation of photonic states carrying OAM is characterized by the presence of a phase term, usually
referred to as Gouy phase, that evolves along the optical axis. Considering for example LG states of Eq. S4, this phase
factor is given by exp [−i(2p+ |m|+ 1) arctan (z/zR)], where z is the coordinate on the optical axis with respect to the
position of the beam waist. The different phase evolution occurring for different values of |m| could be a significant
source of errors in the QW implementation. Let us assume that after step n in the QW setup the state of the photon
is |ψ〉 =

∑
m cm|m〉, where for simplicity we consider only modes with p = 0. When entering the following step,

the coefficients cm will evolve to c′m = e−i2|m| arctan (d/zR)cm, where d is the distance between two steps along the
propagation axis. At the step n + 1, coefficients cm and c′m lead to different interferences between the OAM paths,
altering the features of the QW process. In our implementation we made this effect negligible by relying on the
condition d/zR � 1: indeed, as discussed previously, in our setup we had that zR > 10 m and d ' 10 cm. Again, an
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alternative strategy could be based on using a lens system to image each QP on the following one; at image planes
all relative Gouy phases vanish.

Let us conclude this Section by noting that the need to remain in the optical near field is not a ultimate scaling
limitation for our QW process implementation, as the Rayleigh range zR can be made as large as desired by increasing
the beam waist w0. The beam waist w0 scales as the square root of zR. Hence, the overall needed resources of our QW
implementation, defined as the number of needed optical devices multiplied by their transverse area, scales linearly in
the number of steps n as long as w0 can remain constant, while there is a crossover to the standard quadratic scaling
when z0 must be further increased.

IV. PREPARATION AND MEASUREMENT OF THE OAM STATES

Our approach based on encoding the walker system in the OAM degree of freedom of a single photon enables us
to easily prepare both localized and “delocalized” initial states, the latter corresponding to superpositions of multiple
lattice sites. This is accomplished by means of a holographic technique8,9, which provides an exact solution to the

FIG. S2. Holograms for the preparation of the OAM initial state before the QW process. In the pictures the phase
F(x, y), ranging in the interval (0, 2π), is encoded in the grayscale level of each pixel. Panels (a)-(c) refer to different
initial states in the OAM space. (a) Localized initial state |ψ0〉w = | + 3〉w. (b)-(c) Delocalized Gaussian wavepackets

|ψ0〉w = A0

∑
m e
−ik0me−m

2/2σ2

|m〉w , with σ = 2 and k0 = 0 and k0 = π/2, respectively. A0 is a normalization constant.

problem of generating arbitrary transverse distributions for a paraxial optical field. The relation which links the
transverse component of the generated field, described by E(x, y) = A(x, y)eiP(x,y), and the phase F(x, y) to be
introduced by the hologram (for a plane-wave input) is given by

F =M(A)Mod[(P + B − πM(A)), 2π], (S10)

where B(x, y) corresponds to a blazed grating, which defines the diffraction direction, andM(A) = (1+1/π Sinc−1(A)),
where Sinc−1 takes values in [−π, 0].

The phase hologram is displayed on a spatial light modulator (SLM); when a plane wave is impinging on this
device, the field E(x, y) is generated at the first diffraction order, with an efficiency depending strongly on the phase
and the amplitude distributions (A,P). In our case, we used a Gaussian beam as input, which leads to the same
azimuthal field distribution as for a plane-wave. As an example, in Fig.S2 we report the holograms computed for
the generation of both localized and delocalized (i.e. Gaussian wavepacket) initial states. It can be noticed that the
average quasi-momentum k0 corresponds also to the average azimuthal angle in real space for the optical mode.

In order to measure the OAM value of the photons, we have implemented the widely used holographic technique
introduced by Mair et al. in 20017. In this technique, the helical phase-front of the optical beam is “flattened” by
diffraction on a pitch-fork hologram (displayed on another SLM) and the Gaussian component of the beam at the
far-field is then selected by a single mode optical fiber (SMF). This approach, as shown in Ref. 10, leads to a biased
outcome for the different OAM values, since the coupling efficiency of this projective measurement changes according
to the OAM of the input beam. This issue is analyzed in detail in Ref. 10. We have taken this effect into account
by measuring experimentally the coupling efficiency for different OAM values and then correcting the corresponding
measured probabilities.

In the case of two photons, the OAM measurement was carried out in the same way, by splitting the beam with a
non-polarizing symmetrical beam splitter (BS), projecting the two output beams onto two distinct holograms displayed
simultaneously on two portions of the SLM, and then coupling both diffracted beams into single-mode fibers.
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In prospect, a more efficient OAM measurement approach for these kind of QW simulations (although perhaps less
convenient for full quantum-state tomography) could be based on using the OAM-sorter devices of the kind introduced
in Refs. 11 and 12.

V. EXPERIMENT: SUPPLEMENTARY INFORMATION

In the case of a single photons, we have carried out measurements with a few other choices of input polarization,
besides those already shown in the main article. The results are reported in Fig. S3.

FIG. S3. Supplementary data for the four-step quantum walk for a single photon, with various input polarization states.
(a)-(d) Experimental results, including both intermediate and final probabilities for different OAM states in the evolution
(summed over polarizations). The intermediate probabilities at step n are obtained by switching off all QPs that follow that
step, that is setting δ = 0. Panels (a) and (b) refer to the standard case with two different input states for the coin subsystem,
(α, β) = (1,−1) and 1/

√
2(1/
√

2, 1 − i/
√

2), respectively. (c) and (d) refer to the hybrid case for δ = π/2, with the coin
subsystem, (α, β) = (1,−1) and 1/

√
2(1 − i/

√
2, 1/
√

2), respectively. (e)-(h) Corresponding theoretical predictions. (i)-(l)
Comparison of measured and predicted final probabilities. Poissonian statistical uncertainties at plus-or-minus one standard
deviation are shown as error bars in panels (i)-(n) and as transparent-volumes in panels (a)-(e). The similarities between
experimental and predicted OAM distributions are (89.7± 0.2)%, (90.9± 0.6)%, (98.9± 0.1)% and (97.0± 0.4)%, respectively.
Panels in the same column refer to the same configuration and initial states.

In Fig. S4 we report the layout of the setup used for the simulation of a 2-particle QW. At the input, both photons
exiting the SMF were sent through the QW step sequence, by removing the initial polarizing beam splitter (PBS). The
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FIG. S4. Two-photon quantum walk apparatus. At the exit of the input SMF, a biphoton state is prepared by means of a
QWP-HWP set in the state |L,R〉. Since in this case we explored only the case where the walk starts in m1 = m2 = 0, the
first SLM was not needed and was removed. The two photons, propagating along the same optical axes, go through a 3 steps
QW. At the exit of the last step, a 50:50 BS randomly separates the two photons. At the exit of the BS, each arm is provided
with a linear polarizer for the projective measurement in the SAM space. The OAM projection is then performed using an
SLM and a SMF. For the projection on both arms, a single SLM was used, dividing its screen into two sections and showing
independent holograms. Two interferential filters (IF) were used to filter the photon band so as to enhance the wavelength
indistinguishability of the two photons. Finally, signals from photodiodes D1 and D2 provided the coincidence counts.

biphoton state |H,V 〉 generated by type-II spontaneous parametric down conversion (SPDC) is then converted into
the state |L,R〉 by means of a quarter-wave-plate half-wave-plate (QWP-HWP) set. Since in this case we explored
only the case where the walk starts in m1 = m2 = 0, we removed the first SLM to improve the setup efficiency.
The two photons, propagating along the same optical axes, go through a 3 steps QW. Since the two photons cannot
be distinguished (except for the input polarization, which is however modified in the QW process) and propagate
along the same axis, at the exit of the last step we introduced a 50:50 beam splitter (BS) to split them and perform
independent SAM-OAM projective measurements on the two arms. This splitting stage and the duplication of the
projection devices represent the main difference of this setup with respect to the apparatus discussed in Fig. 2 of
the main article. This process has an efficiency of 50%, as a result of the 1/2 probability that the two photons will
exit from distinct BS ports. At the exit of the BS, each arm is provided with a linear polarizer for the projective
measurement in the SAM space. As in the previous case, the OAM projection is performed using an SLM and a
SMF. For the projection on both arms, a single SLM was used, dividing its screen into two sections and showing
independent holograms. Before the last SMFs two interferential filters (IF) centered at 800 nm and with a bandwidth
of 3.6 nm were used to filter the photon band so as to enhance the wavelength indistinguishability of the two photons.
Finally, signals from photodiodes D1 and D2 were analyzed using a digital logic unit (time window 8 ns) combined
with digital counters in order to get the final coincidence counts.

Before starting the main experiments, the indistinguishability of the two photons generated in the SPDC process
was optimized and verified by carrying out a polarization Hong-Ou-Mandel two-photon interference, as shown in Fig.
S5. The results shown in the figure were obtained for optimal compensation of the walk-off occurring in the SPDC
BBO crystal.
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FIG. S5. Experimental verification of the indistinguishability of the two photon source through polarization Hong-Ou-Mandel
(HOM) interference. The photons pairs in the polarization state |H,V 〉 are sent through a HWP (oriented at an angle θ with
respect to the horizontal direction) and a PBS. Coincidences counts are recorded at the exit of the two output ports of the
PBS. When θ = 22.5◦, after the HWP the biphoton state becomes 1/

√
2(|H,H〉 − |V, V 〉). In this configuration, coincidence

counts vanish as a result of the bunching of the two photons in the same polarization state. The measured visibility of the HOM
fringes, for optimal temporal overlap (as obtained for proper walk-off compensation), is larger than 90%. Poissonian statistical
uncertainties at plus-or-minus one standard deviation are smaller than the size of circles representing the experimental points.

VI. TEST OF PHOTON CORRELATION INEQUALITIES

Let us consider two photons entering the QW apparatus in fixed states 1 and 2. Here, we use a notation in which
the state label at input/output includes both the OAM and the polarization. In our experiment, labels 1, 2 correspond
to a vanishing OAM and L,R polarizations. The output states p will denote the combination of the OAM value m
and horizontal or vertical linear polarizations H,V . The unitary evolution of each photon from these input states to
the final states can be described by a matrix Ul′,l, where the first index corresponds to the input state and the second
to the output one (notice that here we are making no assumptions on this matrix, except for unitarity). Hence, the
QW evolution can be described by the following operator transformation law

â†l′ → b̂†l′ =
∑
l

Ul′,lâ
†
l (S11)

Let us now discuss the inequalities constraining the measurable photon correlations in two specific reference cases.
Our first reference case is that of two independent classical sources (or coherent quantum states with random relative
phases) entering modes 1 and 2, in the place of single photons. The following inequality can be then proved to apply
to the intensity correlations Γp,q = 〈â†pâ†qâpâq〉, for any two given QW output modes p and q13,14:

1

3

√
Γp,pΓq,q − Γp,q < 0. (S12)

In terms of two-photon detection probabilities P̄p,q = (1 + δp,q)Γp,q, the same inequality reads

2

3

√
P̄p,pP̄q,q − P̄p,q < 0, (S13)

where P̄p,q stands for the probability of having state |1p, 1q〉, for p 6= q, or state |2p〉, for p = q, after the QW but before
the BS used to split the photons. After the BS, taking into account the photon-splitting probability, the inequality is
rewritten as

Tp,q =
1

3

√
Pp,pPq,q − Pp,q < 0, (S14)

where Pp,q is now the probability of detecting in coincidence a photon in state p at one (given) BS exit port and the
other photon in state q at the other BS exit port.

Our second reference case is that of two single but distinguishable photons entering states 1 and 2. In this case, it
is easy to prove a second stronger inequality for the coincidence probabilities. Indeed, in this case one has

P̄p,q = |U1,pU2,q|2 + |U1,qU2,p|2 (S15)
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FIG. S6. Experimental violation of correlation inequalities for two photons which have completed the standard QW (δ = π).
The data are based on the coincidences after the final beam-splitter. (a)-(d) Violations of the inequalities given in Eq. (S14),
constraining the correlations that would be obtained for two classical sources, incoherent to each other. Each panel refers to
a different pair of measured polarizations for the two photons. These violations prove that our results can only be explained
with quantum effects. (e)-(h) Violations of the inequalities given in Eq. (S18), constraining the correlations obtained for two
distinguishable photons. Again, each panel refers to a different pair of polarizations. These violations prove that our photons
exhibit two-particle interferences. Only positive values of the Tp,q are reported, while negative values which fulfil the inequality
are omitted. All violations are given in units of Poissonian standard deviations σ, as determined from the coincidence counts.
The color scale reflects the vertical scale.

for p 6= q and

P̄p,p = |U1,pU2,p|2, (S16)

where P̄p,q now stands for the probability of having one of the two distinguishable photons in state p and the other in
q after the QW, before the BS. The mathematical identity (|U1,pU2,q|− |U1,qU2,p|)2 > 0 leads directly to the following
inequality:

2
√
P̄p,pP̄q,q − P̄p,q < 0. (S17)

After the BS, this in turn is equivalent to

Tp,q =
√
Pp,pPq,q − Pp,q < 0. (S18)

The violation of the first inequality (S14) from our coincidence data would prove that the photon correlations cannot
be mimicked by intensity correlations of classical sources. Panels (a-d) in Figs. S6 (standard QW) and S7 (hybrid
QW) show the set of violations found in our two-photon experiments, in units of Poissonian standard deviations. In
some cases, the experimental violations are larger than 5 standard deviations, proving that the measured correlations
are quantum. As these inequalities are valid for any possible unitary propagation of the photons, they are also
independent of all possible misalignments of our setup. Hence, the use of statistical standard deviations to assess the
violation magnitude is well justified.

The violation of the second inequality (S18) from our data proves that the photon correlations are stronger than
those allowed for two distinguishable photons, owing to the contribution of two-photon interferences. Although this
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FIG. S7. Experimental violation of correlation inequalities for two photons which have completed the hybrid QW (δ = π/2).
The data are based on the coincidences after the final beam-splitter. (a)-(d) Violations of the inequalities given in Eq. (S14),
constraining the correlations that would be obtained for two classical sources, incoherent to each other. Each panel refers to
a different pair of measured polarizations for the two photons. These violations prove that our results can only be explained
with quantum effects. (e)-(h) Violations of the inequalities given in Eq. (S18), constraining the correlations obtained for two
distinguishable photons. Again, each panel refers to a different pair of polarizations. These violations prove that our photons
exhibit two-particle interferences. Only positive values of the Tp,q are reported, while negative values which fulfil the inequality
are omitted. All violations are given in units of Poissonian standard deviations σ, as determined from the coincidence counts.
The color scale reflects the vertical scale.

is already demonstrated in some cases by the violation of the first inequality (as the violation of the first inequality
logically implies the violation of the second one), this second inequality is stronger and should be therefore violated
in a larger number of cases and with a larger statistical significance (although it requires assuming that there are two
and only two photons at input, so that a classical source is excluded a priori). Panels (e-h) in Figs. S6 (standard QW)
and S7 (hybrid QW) show the observed violations. This time, certain measurements violate the inequality by as much
as 15 standard deviations, thus proving that two-photon interferences play a very significant role in our experiment.
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